
Previous Article
Diffusive epidemic models with spatial and age dependent heterogeneity
 DCDS Home
 This Issue

Next Article
Chain recurrence in surface flows
Controllability of systems of interconnected membranes
1.  Department of Mathematics, Georgetown Univesity, Washington, DC 20057, United States 
[1] 
Abdelaziz Bennour, Farid Ammar Khodja, Djamel Teniou. Exact and approximate controllability of coupled onedimensional hyperbolic equations. Evolution Equations & Control Theory, 2017, 6 (4) : 487516. doi: 10.3934/eect.2017025 
[2] 
Robin Ming Chen, Feimin Huang, Dehua Wang, Difan Yuan. On the stability of twodimensional nonisentropic elastic vortex sheets. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 25192533. doi: 10.3934/cpaa.2021083 
[3] 
Tong Zhang, Yuxi Zheng. Exact spiral solutions of the twodimensional Euler equations. Discrete & Continuous Dynamical Systems, 1997, 3 (1) : 117133. doi: 10.3934/dcds.1997.3.117 
[4] 
Moncef Aouadi, Imed Mahfoudhi, Taoufik Moulahi. Approximate controllability of nonsimple elastic plate with memory. Discrete & Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021147 
[5] 
Zhaosheng Feng, Qingguo Meng. Exact solution for a twodimensional KDVBurgerstype equation with nonlinear terms of any order. Discrete & Continuous Dynamical Systems  B, 2007, 7 (2) : 285291. doi: 10.3934/dcdsb.2007.7.285 
[6] 
Giovanni Alberti, Giuseppe Buttazzo, Serena Guarino Lo Bianco, Édouard Oudet. Optimal reinforcing networks for elastic membranes. Networks & Heterogeneous Media, 2019, 14 (3) : 589615. doi: 10.3934/nhm.2019023 
[7] 
M. Eller, Roberto Triggiani. Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 283302. doi: 10.3934/dcds.2001.7.283 
[8] 
Lars Lamberg, Lauri Ylinen. TwoDimensional tomography with unknown view angles. Inverse Problems & Imaging, 2007, 1 (4) : 623642. doi: 10.3934/ipi.2007.1.623 
[9] 
Elissar Nasreddine. Twodimensional individual clustering model. Discrete & Continuous Dynamical Systems  S, 2014, 7 (2) : 307316. doi: 10.3934/dcdss.2014.7.307 
[10] 
Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to twodimensional thermoviscoelasticity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 10091028. doi: 10.3934/cpaa.2016.15.1009 
[11] 
Ibrahim Fatkullin, Valeriy Slastikov. Diffusive transport in twodimensional nematics. Discrete & Continuous Dynamical Systems  S, 2015, 8 (2) : 323340. doi: 10.3934/dcdss.2015.8.323 
[12] 
Min Chen. Numerical investigation of a twodimensional Boussinesq system. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 11691190. doi: 10.3934/dcds.2009.23.1169 
[13] 
Fumihiko Nakamura, Michael C. Mackey. Asymptotic (statistical) periodicity in twodimensional maps. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021227 
[14] 
Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 125. doi: 10.3934/eect.2020014 
[15] 
Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953962. doi: 10.3934/cpaa.2006.5.953 
[16] 
Yassine El Gantouh, Said Hadd, Abdelaziz Rhandi. Approximate controllability of network systems. Evolution Equations & Control Theory, 2021, 10 (4) : 749766. doi: 10.3934/eect.2020091 
[17] 
Luis Caffarelli, Luis Duque, Hernán Vivas. The two membranes problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 60156027. doi: 10.3934/dcds.2018152 
[18] 
Lihui Guo, Wancheng Sheng, Tong Zhang. The twodimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure & Applied Analysis, 2010, 9 (2) : 431458. doi: 10.3934/cpaa.2010.9.431 
[19] 
Florian Kogelbauer. On the symmetry of spatially periodic twodimensional water waves. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 70577061. doi: 10.3934/dcds.2016107 
[20] 
Anke D. Pohl. Symbolic dynamics for the geodesic flow on twodimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 21732241. doi: 10.3934/dcds.2014.34.2173 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]